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Relaxation rates in NMR are usually measured by intensity modulation as a function of a relaxation delay
during which the relaxation mechanism of interest is effective. Other mechanisms are often suppressed
during the relaxation delay by pulse sequences which eliminate their effects, or cancel their effects when
two data sets with appropriate combinations of relaxation rate effects are added. Cross-correlated relax-
ation (CCR) involving dipole–dipole and CSA interactions differ from auto-correlated relaxation (ACR) in
that the signs of contributions can be changed by inverting the state of one spin involved in the dipole–
dipole interaction. This property has been exploited previously using CPMG sequences to refocus CCR
while ACR evolves. Here we report a new pulse scheme that instead eliminates intensity modulation
by ACR and thus allows direct measurement of CCR. The sequence uses a constant time relaxation period
for which the contribution of ACR does not change. An inversion pulse is applied at various points in the
sequence to effect a decay that depends on CCR only. A 2-D experiment is also described in which chem-
ical shift evolution in the indirect dimension can share the same constant period. This improves sensitiv-
ity by avoiding the addition of a separate indirect dimension acquisition time. We illustrate the
measurement of residue specific CCR rates on the non-myristoylated yeast ARF1 protein and compare
the results to those obtained following the conventional method of measuring the decay rates of the slow
and fast-relaxing 15N doublets. The performances of the two methods are also quantitatively evaluated by
simulation. The analysis shows that the shared constant-time CCR (SCT–CCR) method significantly
improves sensitivity.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Interference between different relaxation interactions such as
DD(dipole–dipole)/CSA(chemical shift anisotropy) and DD/DD
has long been observed in NMR [1,2]. Anytime that multiple spin
relaxation interactions are modulated by the same motion, or
highly correlated motions, the possibility of cross-correlation con-
tributions to spin relaxation arises [3]. Although these effects
sometimes represent a complication that needs to be carefully
eliminated [4], they can be used to advantage in many situations.
In TROSY-type experiments they improve spectral resolution, or
enhance sensitivity for experiments involving long transverse
15N relaxation delays [5]. In the CRIPT/CRINEPT experiment they
can be used for enhancing polarization transfer and improving
sensitivity [6]. In certain situations they can be used to retrieve
significant structural information [7,8]. Another very common
use in protein NMR is the extraction of motional correlation times
from the interference of 15N–1H DD and 15N CSA interactions [9–
ll rights reserved.

ard).
11]. Many other spin relaxation measurements are, of course,
capable of yielding information on motional correlation times.
The unique feature of cross-correlated relaxation (CCR) is that
interference between two distinct relaxation interactions involv-
ing a given coherence can usually be distinguished from other
sources of relaxation on the same coherence, making these mea-
surements a preferred route to global or internal motions. Pre-
sented here is a new experiment that allows a direct
measurement of the 15N DD-CSA transverse cross-correlation
rates in proteins with improved sensitivity.

Measurement of transverse interference between 1H–15N DD
and 15N CSA interactions is typically based on the cross-relaxation
between the Cartesian operators N± and 2HzN±, or on the differen-
tial self-relaxation of the 15N doublets. The cross-relaxation be-
tween N± and 2HzN± is measured by comparison of their relative
intensities after a transfer period during which J coupling has to
be refocused [10]. The original implementation requires two inde-
pendent experiments that select for either in-phase or anti-phase
coherence so the spectra need to be scaled carefully to correct
for the differences in pulse sequences. The scaling issue can be cir-
cumvented by symmetrical reconversion that aims at canceling out
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the effects of differential relaxation and pulse imperfections by
combining a larger number of independent measurements [12].

Other experiments utilize the differential relaxation rates of the
15N doublets due to DD/CSA interference. The downfield compo-
nent HaN± (0.5N± � HzN±) relaxes at the difference of an ACR (k)
and a CCR (g) while the upfield component HbN± (0.5N± + HzN±) re-
laxes at the sum. Thus CCR can be obtained by taking the difference
of the two rates that are separately measured from build-up curves
such as in the spin-state selection (S3E-CCR) [13] and TRACT
experiments [9], or from the intensity ratio of the up- and down-
field peaks of the 15N doublets such as in the constant-time IP
and IPAP experiments [14]. With the exception of the constant-
time IP experiment which is applicable to small systems with min-
imal signal overlap, generally two independent measurements are
required, which consumes spectrometer time and makes the mea-
surement more susceptible to spectrometer instabilities and non-
idealities in the pulse sequences. The need for multiple measure-
ments arises because ACR is not actively blanked in the pulse se-
quence. Here it is shown that it is possible to directly measure
CCR from a mono-exponential decay utilizing a constant-time
experiment in which relaxation due to ACR remains invariant. This
SCT–CCR method has improved sensitivity compared to previous
approaches and is suitable for investigation of large molecules.

As an illustration of the method the residue specific CCRs of
the ADP ribosylation protein from yeast (yARF1) are measured
and compared with the results obtained using a previous ap-
proach of measuring k + g and k � g separately such as in S3E-
CCR and TRACT. yARF1 is a 21.5 kDa, normally myristoylated, pro-
tein that is an important regulator of vesicle trafficking [15].
There are a number of issues relating to its aggregation state in
both myristoylated and non-myristoylated forms, and its ten-
dency to interact with vesicle membranes, that might be ad-
dressed through the measurement of motional correlation
times. 15N–1H NMR data have been reported on the non-myri-
stoylated human protein previously [16]. However, an inability
to prepare adequate amounts of myristoylated human protein
has dictated initiation of work with the yeast protein. The data
presented here suggested that the non-myristoylated yeast pro-
tein is monomeric at �0.5 mM concentration if a rigid-body mod-
el is assumed. Using experimental data on the non-myristoylated
system as a starting point, the accuracy and robustness of SCT–
CCR has been further tested with synthetic data. The results sug-
gest utility in the further study of myristoylated and membrane
associated forms of the protein.
2. Pulse sequence design

For convenience, here and in the following text, we define k as
the effective auto-correlation rate, which includes the relaxation
due to 15N–1H DD interaction, 15N CSA, DD interaction with remote
spins, and chemical exchange, and we define g as the CCR.

The SCT–CCR pulse sequence resembles a constant/semi-con-
stant-time sensitivity enhanced HSQC experiment (Fig. 1) with
the following major differences. First, the reverse-INEPT (from
point e to detection) adapts the pulse phases proposed by Nietlisp-
ach [17] and thus only selects for the slow relaxing downfield
(TROSY) component. This scheme has improved sensitivity com-
pared to the original TROSY sequence [18].

Second, the constant period T (between b and d) is constructed
so that the eventually detected signal undergoes fast upfield relax-
ation (k + g) during the first part of the relaxation period (D) and
switches to slow downfield relaxation (k � g) during the relaxation
period after the composite 180� proton inversion pulse (T � D). The
15N refocusing pulses allow 15N chemical shift to evolve for a total
time of j�t1 and J coupling for (1 � 2D/T)�j�t1.
Third, the delay between d and e allows additional 15N fre-
quency labeling by (1 � j)�t1. The scaling factor j can be chosen
according to Eq. (1). For small or medium-sized proteins, T can
be set long enough for a t1 constant-time experiment with j set
to 1. For large proteins at high fields, it may be preferable to use
a constant delay T shorter than the desired 15N chemical shift
acquisition time t1,max. In this case j is set to T/t1,max for a semi-
constant-time setup to ensure adequate digitization. This pulse se-
quence also allows separate measurement of down or upfield mag-
netization relaxation rates when T is incremented with both j and
D set to 0, or when T and D are co-incremented with equal values
with only j set to 0. This implementation is expected to be more
sensitive than S3E-CCR and TRACT because t1 labeling is done un-
der slow downfield relaxation in both measurements, although an
imperfect proton inversion pulse may degrade the performance to
some extent. For convenience we will refer to this approach in the
following text as T-aT (meaning TROSY-anti-TROSY, following the
terminology of the TROSY experiment to which our pulse sequence
is closely related).

j ¼
1 T P t1;max

T
t1;max

T < t1;max

(
ð1Þ

Fourth, the reverse-INEPT used here causes measurable amplitude
imbalance between real and imaginary parts of the t1 hypercomplex
pair due to the difference between longitudinal and transverse
relaxation rates. This allows an unwanted multiplet component to
leak through the coherence selection gradients with an intensity
equal to half the difference of the real and imaginary amplitudes.
We have observed this effect in the yARF1 protein. It gets increas-
ingly pronounced when D gets closer to T, because the signals to
be suppressed have stayed increasingly longer at the slow relaxing
rate. The spin-state selection filter between the INEPT and the con-
stant delay T (between a and b) suppresses such artifacts. This
scheme was previously adopted by Pervushin et al. [19] and Yang
et al. [20] as an alternative way of suppressing anti-TROSY lines.
Here the pulse phases have been modified to eliminate the TROSY
signal because the composite proton inversion pulse during T im-
poses a spin flip. This filter also serves to suppress errors from the
differential 15N in-phase and anti-phase relaxation, which is de-
tailed in Appendix A.

The product operator analysis of the above experiment is most
convenient in the single element operator basis. If we consider only
the non-filtered part corresponding to the upfield magnetization,
the density operator at point b of Fig. 1 is:

rb ¼ HbNy ð2Þ

The 15N equilibrium magnetization adds constructively to this tran-
sition to improve sensitivity. During D from points b to c, chemical
shift and J coupling are partially refocused by the 15N p pulse and
active only for D/T�j�t1. Thus Eq. (2) evolves under fast relaxation
as the sum of k and g to:

rc¼� HbNy �cos XNþpJð ÞD �j � t1

T

� �
þHbNx �sin XNþpJð ÞD �j � t1

T

� �� �
�expð�ðkþgÞ �DÞ

ð3Þ

Here XN represents a chemical shift offset in radians/s and J is the
N–H spin coupling in Hz. Then the composite inversion pulse flips
the proton spin state from b to a and, thus, converts the upfield
magnetization to downfield magnetization. During the following
T � D, the magnetization undergoes slow downfield relaxation of
k � g. Chemical shift and J coupling evolve for ±(T � D)/T�j�t1,
respectively. At the end of the constant period (point d), the density
operator is described by



Fig. 1. Pulse sequence of the SCT–CCR experiment. Narrow solid and wide open bars represent 90� and 180� rf pulses, respectively. The rf pulse phase is x unless otherwise
indicated. The delays in the solid bracket are: s1 = D/2 + D/(2T)�j�t1 + 2�pwH, s2 = D/2 � D/(2T)�j�t1, s3 = (T � D)/2 � (T � D)/(2T)�j�t1, s4 = (T � D)/2 + (T � D)/(2T)�j�t1 + 2�pwH,
s5 = (1 � j)�t1, s6 = D/(2T)�j�t1pwH � pwCadb, s7 = (T � D)/2 + (1 � j)/2�t1+pwH � pwCadb, sf = 1/(8JNH) � 1.2 ms, sa = .91/(4JNH) � 2.45 ms. The extra delay of 2 times 90� proton
pulse width (2�pwH) in s1 and s4 eliminates phase errors from the composite proton inversion pulse. The two adiabatic C0–Ca refocusing pulses with bandwidth of 200 ppm
and duration of 1 ms (2�pwCadb) are applied only when s6 > 0 and s7 > 0, respectively. The sinc water flip-back pulse has a duration of 1.4 ms. The shaped pulses and delays are
optimized for 600 MHz magnet. The phase cycling is: /1 = {3p/4,7p/4}, /2 = {2(x),2(�x)}, /3 = {x}, /4 = {x,�x}, /f = {y,�y}. The gradient GH and the phase of /3 are inverted
along with the echo/anti-echo alternation. The z gradients are: G0 = 1.8 G/cm, 0.5 ms; G1 = 26.6 G/cm, 1 ms; G2 = 3.6 G/cm, 0.5 ms; G3 = 5.4 G/cm, 0.5 ms; GN = 31.9 G/cm,
2 ms; GH = 32.3 G/cm, 0.2 ms; GCT = 7.1 G/cm, 0.5 ms; Gf = 7.1 G/cm, 0.5 ms; For high Q probes, the gradient strength of GCT may be increased to suppress radiation damping.
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rd ¼ ðHaNy � cos ðXN þ pJÞD � j � t1

T
þ ðXN � pJÞ ðT � DÞ � j � t1

T

� �
þ HaNx � sin ðXN þ pJÞD � j � t1

T
þ ðXN � pJÞ ðT � DÞ � j � t1

T

� �
� expð�ðkþ gÞ � D� ðk� gÞ � ðT � DÞÞ

¼ HaNy � cos XN � pJ 1� 2D
T

� �� �
� j � t1

� ��
þHaNx � sin XN � pJ 1� 2D

T

� �� �
� j � t1

� ��
� expð�ðk� gÞ � TÞ

� expð�2g � DÞ ð4Þ

Following the additional 15N frequency labeling delay between
points d and e, chemical shift and J coupling evolve for ±(1-j)�t1,
respectively. At point e, the density operator is described by:

re ¼ HaNy � cos XN � pJ 1� 2D � j
T

� �� �
� t1

� ��
þHaNx � sin XN � pJ 1� 2D � j

T

� �� �
� t1

� ��
� expð�ðk� gÞ � TÞ � expð�2g � DÞ: expð�ðk� gÞ � ð1� jÞ � t1Þ ð5Þ

After the sensitivity-enhanced reverse INEPT, both HaNy and HaNx

are converted to detectable terms. As is apparent from (5), as D var-
ies, the signal intensity decays by exp(�2g�D). An attenuation of ex-
p(�(k � g)�T) is encountered due to the constant delay T, which
occurs at the slow downfield relaxation rate. For proteins at high
magnetic field this constant attenuation can be quite small. The t1

dependent relaxation from the extra 15N frequency labeling period
exp(�(k � g)�(1 � j)�t1) is independent of D, thus spectra from dif-
ferent D values have identical line-width in the 15N dimension so
that peak heights can be used for the extraction of g.

The 2D Fourier-transformed signal occurs at (XH + pJNH,
XN � pJNH�(1 � 2D�j/T)). As D increases from 0 to T, the peak moves
from the TROSY peak position (XH + pJNH,XN � pJNH) to (XH + p
JNH,XN � pJNH�(1 � 2j)). This feature could be used to measure JNH

couplings, although it is not the primary objective here.

3. Results and discussion

3.1. Evaluation using experimental data

The SCT–CCR experiment was evaluated on the 21.5 kDa 15N
yeast ARF1 protein. Assignments for backbone resonances were
made using traditional triple resonance methods (CBCANH and
CBCA(CO)NH), and assignments have been deposited in the BMRB
(Accession #15626). The SCT–CCR experiment was run on a
0.5 mM sample on a 600 MHz Varian spectrometer with a room
temperature probe. As a control, g was also measured by the T-
aT method with the pulse sequence in Fig. 1 by varying T while D
and j are set to 0 (to measure k � g), or by co-varying T and D while
j is set to 0 (to measure k � g). The SCT data were acquired in
�11 h and the T-aT data in �22 h. To confirm the equivalency of
the two methods, both experiments were run twice with identical
settings. The results of these experiments are presented in Fig. 2.
Fig. 2A and B compare the results of one SCT–CCR experiment
and the two T-aT experiments. It is clear from the slope that iden-
tical values are being measured and that deviations in the results
appear to be due to random noise. The average deviation is 3.5%.
Fig. 2C compares results from the two T-aT experiments. The aver-
age deviation proves to be 3.4%, showing that the scatter in results
from the two T-aT experiments is indistinguishable from that be-
tween the SCT–CCR and T-aT experiments (Fig. 2A and B). This is
true despite the fact that twice the acquisition time was devoted
to each of the T-aT experiments. Fig. 2D compares results from
two identical SCT–CCR experiments where similar error ranges
were found as in other comparisons. Mono-exponential decay
curves of representative residues are shown in Fig. 2E.

The residue specific rotational correlation times were calculated
following the approach of Lee et al. [9] except that here we used
the average geometry-dependent CSA value and bond-length
determined from the solution state [23,24]. If a rigid-body model
is assumed, the CCRs (Fig. 2F) agree with a monomeric state of
the protein. It should be mentioned that correlation times deter-
mined this way are subject to the site-to-site variants of geome-
try-dependent CSA, internal motions and rotational anisotropy. A
more detailed picture requires measurement of longitudinal CCR
(gz) to remove the CSA dependence through the ratio of transverse
and longitudinal CCRs (gxy/gz) [11]. Under a rigid-body assumption,
the rotational diffusion tensor can be determined from the gxy/gz

ratio.

3.2. Evaluation by simulation

The performance of SCT–CCR can be more extensively evalu-
ated with respect to T-aT by simulation. The measurement accu-
racy of an exponential decay rate depends on a number of
factors, including S/N, the number and method of relaxation sam-
pling, the relaxational acquisition time (T), and the value of the
decay rate.



Fig. 2. (A–D) The SCT–CCR experiments were run with T = 50 ms, j = 1 and D = (0, 7.12, 14.24, 21.36, 28.48, 35.6, 42.72, 49.84) ms, using the pulse sequence in Fig. 1; The T-aT
experiments were run with j = 0, T = (0, 20, 40, 60, 80, 100, 120, 140) ms, and D = 0 ms for TROSY rates, and with j = 0 and D = T = (0, 8, 16, 24, 32, 40, 48, 56) ms for anti-
TROSY rates. E: Relaxation decay curves of representative residues. F: The rotational correlation times were calculated for non- or mildly overlapping residues in yeast ARF1
protein; the points and error bars correspond to the average values and standard deviations derived from the 4 experiments in (A)–(D).
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3.2.1. S/N
In our simulation, we define as unity the intensity of a 2-D Fou-

rier-transformed signal that has undergone no relaxation delay in
the TROSY or anti-TROSY rate measurement sequences. The spec-
tral noise is assumed to be random within ±0.05. Thus, the signal
intensity of a TROSY/anti-TROSY measurement is modulated by:

IðtÞ ¼ expð�R � tÞ þ c ð6Þ

where R = k ± g for up- and downfield relaxation, respectively, and c
is the random noise within ±0.05.

Based on this, the intensity of SCT–CCR is simulated from Eq. (5)
as:

IðtÞ ¼ g � expð�ðk� gÞTÞ � expð�2g � tÞ þ c ð7Þ

Here T is the length of the constant delay, t equals D in Fig. 1 (thus
t 6 T), and g is the sensitivity gain from sharing the 15N chemical
shift evolution within the constant relaxation delay. If a cosine
square apodization function is used during data processing of the
15N dimension, the sensitivity gain is [21]:

g ¼

R t1;max
0 expð�ðk� gÞ � ð1� jÞ � tÞ � cos2 p�t

2t1;max

� �
dtR t1;max

0 expð�ðk� gÞ � tÞ � cos2 p�t
2t1;max

� �
dt

ð8Þ

where j is defined by Eq. (1) and t1,max is set to 35 ms in our simu-
lation, although in reality the robustness of mirror image prediction
allows a considerably shorter acquisition time to be used [22] in the
case where j is set to 1. It is worth noting that the analysis above is
based on the assumption that SCT–CCR consumes half the spec-
trometer time as T-aT, because in the latter two relaxation rates
have to be measured. If we double the transients of SCT–CCR so that
both take equal amounts of spectrometer time, the random noise (c
in (5)) is lowered by a factor of

ffiffiffi
2
p

.

3.2.2. Sampling
In the simulation, we use uniform sampling with 8 points in to-

tal, going from 0 to T.

t ¼ n � T
7
ðn ¼ 0;1; . . . ;7Þ ð9Þ

T is the relaxational acquisition time. In case of SCT–CCR, it is
also equal to the constant delay. Geometric sampling is also fre-
quently used in relaxation measurements. Our simulation indi-
cates that for T-aT, linear sampling achieves better accuracy
provided T is optimized (data not shown). However geometric
sampling is more robust against large mis-setting of T and thus is
more favorable in case of very high dynamic ranges of relaxation
rates. For SCT–CCR, linear sampling generally gives better accuracy
than geometric sampling. In our comparison we focus on the best
achievable accuracies of the two different approaches for a given
relaxation rate and thus adopt linear sampling in the simulation.

3.2.3. k and g
To simplify analysis, we consider the spin diffusion limit so that

the spectral density function is dominated by the zero-frequency
component. Without remote DD interaction and chemical
exchange,

k ¼ l0 ��h2 �c2
H �c

2
N

8ð4pÞ2r6
HN

þ Dr2
N �c

2
N �B

2
0

18

� �
� 4Jð0Þ

g ¼ l0 ��h�cH �cN
4p�r3

HN
� DrN �cN �B0

6 � 3 cos2 h�1
2 � 4Jð0Þ

8><>: ð10Þ

Obviously the ratio of k over g is only dependant on B0 and certain
geometric factors. Here we assume the average 1H–15N geometric
and shielding values determined from data on ubiquitin in the solu-
tion state apply to all residues; DrN = 169 ppm, h = 21.4�, and
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rHN = 1.04 Å [23,24]. At a 600 MHz field, k/g ffi 1.38. Remote DD
interactions and chemical exchange can be modeled by increasing
this ratio. This treatment saves a tremendous amount of simulation
time.

3.2.4. The relaxational acquisition time T
The choice of T greatly affects the measurement accuracy in

both experiments. During simulation it is incremented from 4 to
200 ms for SCT–CCR, or to 400 ms for T-aT, in 2 ms steps. The value
that leads to the smallest standard deviation is defined as Tbest.

3.2.5. Standard deviational error (SD)
The relaxation rate is calculated by least-square fitting an expo-

nential decay with 8 time points from 0 to T. The standard devia-
tion is estimated from 500 Monte Carlo simulations with the
intensity of each sampling point varying randomly within ±0.05.
The deviational error of g is propagated according to:

SDðgÞ ¼
1
2 SDð2 � gÞ SCT

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SD2ðkþ gÞ þ SD2ðk� gÞ

q
T-aT

8<: ð11Þ

Using the equations above the deviational errors were estimated for
g’s covering the range observed for yARF1 at their respective Tbest’s
(Fig. 3A–C). The ratio k/g was set to 1.38, 2.0, and 2.5 in Fig. 3A–C,
Fig. 3. (A–C) The percentage deviation at Tbest (minimal percentage deviation) as a fun
propagation follows Eq. (11). For T-aT simulations, Tbest is determined individually for TR
for g evenly distributed within 10–20 s�1, calculated by 1

n

Pn
i¼1

SDðgi Þ
gi

, where n = 11, and 10
transients; c: k/g = 2.5; c0: k/g = 2.5, double transients; e: decay from the initial intensi
n = 11, and g(i) = 10, . . . ,20 s�1. It represents the intensity ratio of the last point (D = T) ove
and not considered.
respectively, reflecting increasing contributions from remote DD
interactions and chemical exchange at a 600 MHz field. SCT–CCR
simulations were conducted for three cases. In the first one, the ran-
dom spectral noise was set at ±0.05 as was used for T-aT simula-
tions. In the second case, the noise level was lowered to
�0:05=

ffiffiffi
2
p

reflecting a doubled number of transients so that it
would consume an equal amount of spectrometer time as T-aT. In
the third case, the noise was set to a level that gives similar accura-
cies as T-aT in the examined range, which is 0:05=

ffiffiffiffiffiffiffi
1:2
p

according to
the simulation.

There are several noteworthy trends seen in Fig. 3A–C. The SCT–
CCR experiment at half the time slightly under-performs the T-aT
experiment (e.g., �5.4% vs �5.0% when k/g=1.38) over a wide range
of cross-correlation rates. The SCT–CCR experiment with doubled
transients (thus equal time as T-aT) gives significantly better accu-
racies. SCT–CCR with 1.2-fold transients gives similar accuracies as
T-aT, thus saving 40% spectrometer time. The performances of both
methods are somewhat insensitive to g within the examined range.
The performances of both methods degrade as the ratio of k/g
increases.

The improvement of the SCT–CCR experiment over the T-aT
experiment is worth further analysis. Although some signal atten-
uation is encountered during the constant delay T, this effect is
mitigated by the fact that the decay is by the slow relaxation rate
ction of g for k/g = 1.38, 2, and 2.5. Data synthesis follows Eqs. (6)–(9). Deviation
OSY and anti-TROSY rates. D: Average percentage deviations from CT measurements
–20 s�1. a: k/g = 1.38; a0: k/g = 1.38, double transients; b: k/g = 2; b0: k/g = 2, double
ty averaged over 10–20 s�1, using the equation: e ¼ 1

n

Pn
i¼1 expð�2 � gðiÞ � TÞ, where

r the first point (D = 0). The attenuation of exp(�(k � g)�T) in Eq. (5) is irrelevant here
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of k � g (Eq. (5)). Also, sharing 15N chemical shift evolution with
the constant delay remedies some of the signal loss, improving
sensitivity by �17% for the yeast ARF1 protein when a cosine
square apodization function is used. The percentage is higher in
the case of a weaker damping function, such as a cosine function.
In addition, the errors are propagated differently in the two meth-
ods (Eq. (11)). In the T-aT experiment, the TROSY and anti-TROSY
measurements have identical percentage deviation (data not
shown) because both decay from the same initial intensity. How-
ever, the anti-TROSY measurement gives significantly higher abso-
lute deviation, because its signal decays at k + g while in the TROSY
measurement it decays at k � g. As is obvious from Eq. (11), it is the
absolute deviation that gets propagated to the uncertainty in g. As
a result, the large anti-TROSY rate is the main source of error in the
T-aT experiment. In the SCT experiment, the signal decays at 2g,
which is significantly smaller than k + g; this also lowers the abso-
lute deviation. Finally, the SCT–CCR experiment saves time by
avoiding two separate measurements, which is equivalent to in-
creased sensitivity.

In the analysis above, we examined the uncertainty at Tbest for a
given pair of k and g rates. In reality, the molecule under investiga-
tion may have a high dynamic range of cross-correlation rates due
to anisotropic tumbling or internal motions. Obviously a single
relaxational acquisition time T cannot simultaneously be ideal for
all the correlation rates. In Fig. 3D, the average percentage devia-
tions (see figure legends for definition) for a uniform distribution
of g values spanning the range of 10–20 s�1 as a function of T is
considered. The curves a/a0–c/c0 correspond to different k/g values
calculated with either equal or twice the number of transients as
in T-aT. The minima in the curves correspond to a best averaged
T, and the extremes show the effects of not selecting an optimum
value. Curve e illustrates the average decay of signal during the
experiment. Comparison of Fig. 3A–C vs 3D suggests that the min-
imal averaged deviation is only slightly higher than the minimal
deviation of a single g. Thus the SCT–CCR method is able to handle
a range of internal and anisotropic dynamic effects very well.

Lastly, an analysis of how the choice of T impacts the perfor-
mance is considered. This has considerable practical significance.
As shown in Fig. 3D, when the k/g ratio is low, the performance
is stable over a wide range of T values. When the ratio is high,
the average deviations go up quickly as T shifts away from the opti-
mized value. In this case it is critical to have an estimate close to
optimal before the experiment starts. Under our simulation condi-
tions, near optimal performance occurs when the signal at D = T is
allowed to decay to �40% of the initial intensity at D = 0, regardless
of the k/g ratio and S/N (Fig. 3D). Similar analysis on g distributed
over 20–30 s�1 leads to the same conclusion (data not shown). A
higher S/N merely scales down the deviation and flattens the curve,
but does not change the optimal T value (Fig. 3D). Thus 40% serves
as a useful guide during the experiment setup. This value can be
quickly selected by observing intensities in several 1-D scans. It
is worth mentioning that the 40% guide should be applied to a part
of the 1-D spectrum that lacks signals from the flexible terminal re-
gions which relax slowly and are usually not of interest.

3.3. Potential sources of systematic errors

3.3.1. Cross relaxation between the 15N doublets
In the product operator analysis in the earlier section, cross

relaxation between the 15N doublet components has been ne-
glected since in amides (2pJ)2 is usually much greater than
(R2,HN � R2,N)2, where R2,N and R2,HN refer to 15N in-phase and
anti-phase relaxation. The residual effects could be further
quenched by setting all J coupling free evolution delays to multi-
ples of 1/2J [25]. However, it is generally not applicable to fre-
quency labeling periods, and the natural spread of couplings
makes this approach less efficient at long delays. Rigorous calcula-
tions using the full relaxation matrix are detailed in Appendix A,
where it is shown that the spin-state selection filter (between a
and b in Fig. 1) employed in SCT–CCR largely suppresses such ef-
fects from 15N doublet cross-relaxation. Thus SCT–CCR outper-
forms the A/B experiment [10] and CT-IP [14] in the presence of
fast amide proton longitudinal relaxation.

3.3.2. Cross-correlation between 15N CSA and DD interactions with
distant protons

So far we have considered only one pair of nuclei. In actuality
the nitrogen can be dipolar coupled to other protons and cross cor-
relation between 15N CSA and these distant DD interactions can
also exist. In the SCT–CCR experiment the proton inversion pulse
during T has the ‘‘side effect” of flipping the spin states of distant
protons, which can cause an expected under-estimation by 0.75%
for a fully protonated protein based on calculations detailed in
Appendix A. These effects are therefore small, but distant relaxa-
tion correlations can be further quenched by perdeuteration.

4. Conclusion

Based on the above presentation it is clear that the SCT–CCR
experiment has an advantage in sensitivity compared to conven-
tional methods that require two or more complementary measure-
ments. The new method is robust in the presence of a considerable
range of cross-correlation rates and is easily adapted to applications
where either overall rotational correlation times or the effects of
internal motion are of interest. It is robust against the cross-relaxa-
tion effect between 15N doublets even in the presence of very high
proton longitudinal relaxation. A small and predictable under-esti-
mation occurs associated with proton inversion during the relaxa-
tion delay but is usually beyond the resolution of these
experiments and can be largely removed by protein perdeuteration.
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Appendix A. Cross relaxation between the 15N doublets

The magnetization propagates from time 0 (point b, Fig. 1) to T
(point d, Fig. 1) by:

hHaNþiðTÞ
hHbNþiðTÞ
hHaN�iðTÞ
hHbN�iðTÞ

0BBB@
1CCCA ¼ expð�bL � s4Þ � RðpNÞ � expð�bL � s3Þ � RðpHÞ

� expð�bL � s2Þ � RðpNÞ

� expð�bL � s1Þ �

hHaNþið0Þ
hHbNþið0Þ
hHaN�ið0Þ
hHbN�ið0Þ

0BBB@
1CCCA ðA1Þ

where si’s are the delays defined in Fig. 1. In the case of on-reso-
nance excitation (i.e., XN = 0), the Liouvillian bL is described by:

bL ¼
�ipJ þ R2 � g �R1=2 0 0
�R1=2 ipJ þ R2 þ g 0 0

0 0 ipJ þ R2 � g �R1=2
0 0 �R1=2 �ipJ þ R2 þ g

0BBB@
1CCCA
ðA2Þ



Y. Liu, J.H. Prestegard / Journal of Magnetic Resonance 193 (2008) 23–31 29
where R2 ¼ ðR2;N þ R2;HNÞ=2, R1 = R2,HN � R2,N. R(pN) and R(pH) in Eq.
(A1) are rotation matrices describing the effects of 15N and 1H p
pulses, which exchanges the magnetization of Ha/bN+ and Ha/bN�,
and of HaN± and HbN±, respectively. Neglecting relaxation during
the rf pulses, they are represented by:

RðpNÞ ¼

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

0BBBB@
1CCCCA RðpHÞ ¼

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

0BBBB@
1CCCCA ðA3Þ

When the off-diagonal elements in Eq. (A2) are neglected, HaN± and
HbN± evolves independently and Eq. (4) can be trivially derived from
Eq. (A1). With the off-diagonal elements included, the analytical
solution to Eq. (A2) is extremely complicated so we took a numer-
ical approach based on Eqs. (A1)–(A3). It is clear from Eq. (A1) that
the deviation of CCR generally dependents on the experimental set-
tings of T, D and t1. Instead of showing the map of a 3-dimensional
grid-search, we only discuss three simple but instructive cases and
compare the performance of SCT–CCR with that of CT-IP (CT-cou-
pled-HSQC). The sequential propagation for CT-IP simulation is gi-
ven by expð�bL � T�t1

2 Þ � RðpNÞ � expð�bL � Tþt1
2 Þ instead of Eq. (A1). A

large proton R1 of 30 s�1 is adopted in these simulations along with
a JNH coupling of �93 Hz, and g of 12 s�1. R2 in Eq. (A2) simply
causes an irreversible decay and thus is irrelevant in these compar-
isons. j is set to 1 in all cases.

(i) T varies, D equals 0 or T, and t1 equals 0.
g can be determined by: log(I(D=0,t1=0)/I(D=T,t1=0))/(2T). For the
CT-IP experiment g is calculated from: log(Iup/Idown))/(2T),
Fig. A1. (A–C) Performance comparisons between SCT–CCR and CT-IP in the presence o
presence of high proton longitudinal relaxation. E: Estimation of errors due to DD/CSA CC
with all distant DD/CSA CCR in consideration. a: Error-radius dependence based on the pr
at h = 0. b: Error-radius dependence based on the proton density around the amide 15

Averaged error-radius profile from 200,000 simulations with random DD/CSA orientati
distribution, d: Histogram of error distribution from 200,000 simulations used in c.
where T is allowed to vary and t1 is 0. As shown in
Fig. A1A, SCT–CCR is significantly more robust than CT-IP
against a random setting of T.

(ii) t1 varies, T is fixed, and D equals 0 or T.
Similarly, g is determined by: log(I(D=0,t1)/I(D=T,t1))/(2T). Com-
parison can be made to CT-IP where t1 instead of T is allowed
to vary. Results are shown in Fig. A1B. T is set to 0.053 s in
both, representing a roughly identical initial deviation at
t1 = 0, according to Fig. A1A. SCT–CCR is significantly less
sensitive to the incrementing t1. It is interesting to note from
the CT-IP data that varying the position of the 15N refocusing
pulse inside a constant delay can cause considerable fluctu-
ations, although Fourier transform of this dimension at a
later time should average them out to certain extent.

(iii) T is fixed, t1 equals 0, and D varies between 0 and T.
For CT-IP, T is varied with t1 set to 0, which is identical to
case (i). No direct comparison can be made in this case
because different time variables are being changed. How-
ever, since both methods assume a mono-exponential mod-
ulation by g, namely exp(�2D�g) and exp(�2T�g), here we
compare their respective deviations from an ideal mono-
exponential curve, as shown in Fig. A1C. The profile of
SCT–CCR is indistinguishable from an ideal mono-exponent
at the displayed scale while that of CT-IP shows considerable
fluctuations, which, of course, synchronize with those seen
in Fig. A1A.

The differential performance between the two is because that
the coherences are prepared differently prior to the relaxation de-
lay. CT-IP starts with an equal mixture of up and downfield magne-
f high proton longitudinal relaxation. D: Effects of small or zero J couplings in the
R between amide 15N and two a protons of a glycine residue. F: Estimation of errors
oton density seen in yARF1 and even distribution, with uniform DD/CSA orientation

N of a glycine and even distribution, with uniform DD/CSA orientation at h = 0. c:
on given by PðhÞ ¼ sinðhÞ

2 � dh, based on the proton density seen in yARF1 and even
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tization: 2HzNx/y = �HaNx/y + HbNx/y, which can be represented by a
vector (�1 � i, 1 + i, 0, 0) following the format in Eq. (A1). In con-
trast, the spin-state selection filter in SCT–CCR (between points a
and b in Fig. 1) creates an active coherence solely of the upfield
magnetization HbNx/y, represented by (0, 1 + i, 0, 0). This largely
suppresses the effects due to cross-relaxation between the dou-
blets. Similarly, the S3E-CCR experiment is also expected to per-
form well in this aspect. For CT-IPAP which contains two
experiments with the starting magnetizations described by
(�1 � i, 1 + i, 0, 0) (IP) and (1 + i, 1 + i, 0, 0) (AP), the deviations
go in opposite directions for the two measurements (data not
shown) and thus can be suppressed by post-acquisition addition
and subtraction as are normally conducted in these experiments.

A.1. Cross-correlation between 15N CSA and DD interactions with
distant protons

Taking into consideration the cross-correlations between 15N
CSA and DD interactions with distant protons, the amide down
and upfield parts of the density matrix can be expanded as:

rd=uð0Þ ¼ Ha=b
N N� � I ¼ Ha=bN� �

X
SðiÞ¼a;b

Yn

i¼1

HSðiÞ
i ðA4Þ

where I is the identity operator, i refers to the i-th remote proton
and S(i) is the spin state of the i-th proton. The nitrogen is dipolar
coupled to n distant protons so we expand the original 2-spin oper-
ator into 2n n + 2 spin operators in the direct product space. To sim-
plify analysis, we neglect cross-relaxation among these operators
due to proton R1’s so that these 2n operators relax independently
at their respective rates. This approach can be validated from
Fig. A1D, which shows that a high proton R1 of 10 s�1 has very small
effects on the effective CCR even in the absence of J coupling within
the time-scale used for transverse CCR measurements. Cross-corre-
lations between different DD interactions are not affected by the
proton inversion pulse and are therefore not considered. Thus the
evolution of these operators obey:

rd=uðtÞ ¼ Ha=b
N N� �

X
SðiÞ¼a;b

Yn

i¼1

HSðiÞ
i

� exp � k� gþ
Xn

i¼1

gið1� 2dSðiÞ;aÞ
 !

� t
 !

¼ Ha=b
N N� � expð�ðk� gÞ � tÞ � 1

2n �
Yn

i¼1

ðexpðgi � tÞ

þ expð�gi � tÞÞ þ OðtÞ ðA5Þ

where ds(i),a is the Kronecker delta. The second line of Eq. (A5) is ob-
tained using the relationship: Ha=b

i N� ¼ 1
2 N� � Hi;zN�. O(T) encapsu-

lates all the coherences that are multi-quantum during direct
acquisition. In the context of SCT–CCR, the density operator at the
end of the constant delay T is described by:

rSCTðTÞ ¼ HaN� � exp � k� g�
Xi¼n

i¼1

gið1� 2dSðiÞ;aÞ
 !

T

 !

� expð�2g � DÞ � 1
2n

Yn

i¼1

ðexpð2gi � DÞ þ expð�2gi � DÞÞ þ OðTÞ

ðA6Þ

The term 1
2n

Qn
i¼1ðexpð2gi � DÞ þ expð�2gi � DÞÞ indicates that distant

DD/CSA CCRs also modulate with respect to D. Taylor expansion
of the exponents mutually cancels the odd terms but the even terms
add up. Since (exp (2gi�D) + exp(�2gi�D))/2 P 1, the effects from all
the remote CCRs accumulate regardless of the signs of gi, and lead
to systematic under-estimation of amide CCR. The percentage error
associated with a measurement of two sampling points at D1 and D2

is:

PE ¼ 1
2 j D1 � D2 j �g

�
Xn

i¼1

log
expð2gi � D2Þ þ expð�2gi � D2Þ
expð2gi � D1Þ þ expð�2gi � D1Þ

� �
ðA7Þ

Due to the r�3 dependence of CCR, these correlations are usually
quite weak. Glycine is the most likely to be affected which has
two a protons just over 2 Å away from the amide nitrogen. Assum-
ing an gHN of 12 s�1 with h = 0� for the amide proton and 0� for a
protons as a conservative estimate, CCR to the two a protons is
around 1.8 s�1 each. The deviation from the ideal mono-exponent
is shown in Fig. A1E. An 8 point linear sampling from 0 to 0.049 s
leads to a g of �11.74 s�1, or �2.2% under-estimation. As the
1H–15N distance increases, the contribution sharply drops. Similar
calculations indicate that it takes 10 protons at 3 Å, or 209 protons
at 5 Å to cause 1% error, either of which is extremely unlikely.

An upper limit of error can be estimated that combines the ef-
fects from all distant protons. This is conducted in two ways. One is
based on the ARF protein which has a radius of �20 Å and contains
�1500 protons. A proton distance profile is generated assuming
even distribution. The other approach starts with a glycine that
has 2 protons within 2 Å and assumes the number of protons at
distance r to 15N is proportional to r2. In both calculations, we grad-
ually (0.001 Å step-size) increase the radius of a sphere from 2 Å
with 15N in the center, and incorporate the effects of newly encom-
passed protons. The compound errors are calculated based on Eq.
(A7) with D1 = 0 and D2 = 0.04 s, and h = 0�, which represents the
least favorable DD/CSA geometry. As shown in Fig. A1F curves a
and b which result from the two approaches, respectively, the per-
centage error is quickly saturated at �5 Å to a final value of �3.5%.
Also shown in Fig. A1F (curves c and d) is a simulation based on a
true random distribution with the probability density at h equal to
sin(h)/2. Curve c is a profile averaged over 200,000 simulations and
curve d is a histogram showing the probability distribution for the
observed error range, which mimics a chemical shift powder pat-
tern. These simulations show that the probability-weighted aver-
age (‘‘isotropic” value) is about 0.75% and it is extremely rare to
have an error above 2%. Generally errors of this magnitude are
not a concern and are paid off by the enhanced sensitivity of this
method. Moreover, if the protein structure is known, this error
can be readily predicted. The modulation by distant DD/CSA CCRs
can be quenched by replacing the hard proton inversion pulse in
the relaxation delay with a band-selective pulse covering the
amide region, although modulations from DD/DD CCRs will arise
instead. Protein perdeuteration should be a better solution.
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